766 research outputs found

    Der har været for meget fokus på faglige hensyn i centraliseringsdebatten

    Get PDF
    Kaare Dybvad Bek blev minister for et nyt Indenrigs- og Boligministerium i 2021. Administrativ Debat mødte indenrigs- og boligministeren godt et år efter udnævnelsen for at drøfte sammenhængskraften i Danmark, kommunestukturen og udflytning af statslige institutioner. Det står klart, at ministeren gerne vil rette op på kommunalreformen de steder, hvor centraliseringen efter hans opfattelse er gået for vidt i jagten på faglige synergier, som ofte har vist sig ikke at komme de lokale borgere til gode

    Den brændende platform for kommunerne er en udskudt sundhedsreform og et uløst udligningsproblem

    Get PDF
    Administrativ Debat mødte før sommerferien KL’s administrerende direktør Kristian Wendelboe til en snak om, hvordan det går med det kommunale selvstyre, de økonomiske og styringsmæssige udfordringer, som kommunerne står overfor samt ikke mindst det stærke kommunale sammenhold, der udfordres fra flere sider. Øverst på KL’s ønskeseddel til en ny regering står en sundhedsreform, der skal opbygge kapacitet og struktur i det nære sundhedsvæsen, og en udligningsreform af både navn og gavn

    Et nyt internationalt skattesystem og de økonomiske konsekvenser af pandemien har fyldt næsten alt for OECD siden starten af 2020

    Get PDF
    Ulrik Vestergaard Knudsen skiftede i januar 2019 departementschefskontoret i Udenrigsministeriet på Asiatisk Plads i København ud med rue André Pascal i Paris, hvor han som vicegeneralsekretær i OECD er med til at sætte retning for det internationale økonomiske samarbejde for 38 medlemslande og 3.700 OECD-medarbejdere. Ulrik fortæller i dette interview, hvordan forhandlingerne om et nyt internationalt skattesystem for multinationale virksomheder og ikke mindst håndteringen af coronakrisen har været omdrejningspunktet for næsten alt i organisationen siden starten af 2020

    TSDF: A simple yet comprehensive, unified data storage and exchange format standard for digital biosensor data in health applications

    Full text link
    Digital sensors are increasingly being used to monitor the change over time of physiological processes in biological health and disease, often using wearable devices. This generates very large amounts of digital sensor data, for which, a consensus on a common storage, exchange and archival data format standard, has yet to be reached. To address this gap, we propose Time Series Data Format (TSDF): a unified, standardized format for storing all types of physiological sensor data, across diverse disease areas. We pose a series of format design criteria and review in detail current storage and exchange formats. When judged against these criteria, we find these current formats lacking, and propose a very simple, intuitive standard for both numerical sensor data and metadata, based on raw binary data and JSON-format text files, for sensor measurements/timestamps and metadata, respectively. By focusing on the common characteristics of diverse biosensor data, we define a set of necessary and sufficient metadata fields for storing, processing, exchanging, archiving and reliably interpreting, multi-channel biological time series data. Our aim is for this standardized format to increase the interpretability and exchangeability of data, thereby contributing to scientific reproducibility in studies where digital biosensor data forms a key evidence base

    Probabilistic modelling of gait for robust passive monitoring in daily life

    Get PDF
    Passive monitoring in daily life may provide valuable insights into a person's health throughout the day. Wearable sensor devices play a key role in enabling such monitoring in a non-obtrusive fashion. However, sensor data collected in daily life reflect multiple health and behavior-related factors together. This creates the need for a structured principled analysis to produce reliable and interpretable predictions that can be used to support clinical diagnosis and treatment. In this work we develop a principled modelling approach for free-living gait (walking) analysis. Gait is a promising target for non-obtrusive monitoring because it is common and indicative of many different movement disorders such as Parkinson's disease (PD), yet its analysis has largely been limited to experimentally controlled lab settings. To locate and characterize stationary gait segments in free-living using accelerometers, we present an unsupervised probabilistic framework designed to segment signals into differing gait and non-gait patterns. We evaluate the approach using a new video-referenced dataset including 25 PD patients with motor fluctuations and 25 age-matched controls, performing unscripted daily living activities in and around their own houses. Using this dataset, we demonstrate the framework's ability to detect gait and predict medication induced fluctuations in PD patients based on free-living gait. We show that our approach is robust to varying sensor locations, including the wrist, ankle, trouser pocket and lower back

    Особенности трудовых стереотипов белорусов

    Get PDF
    Материалы IX Междунар. науч. конф. студентов, аспирантов и молодых ученых, Гомель, 19-20 мая и 7 июня 2016 г

    Automated Quality Control for Sensor Based Symptom Measurement Performed Outside the Lab

    Get PDF
    The use of wearable sensing technology for objective, non-invasive and remote clinimetric testing of symptoms has considerable potential. However, the accuracy achievable with such technology is highly reliant on separating the useful from irrelevant sensor data. Monitoring patient symptoms using digital sensors outside of controlled, clinical lab settings creates a variety of practical challenges, such as recording unexpected user behaviors. These behaviors often violate the assumptions of clinimetric testing protocols, where these protocols are designed to probe for specific symptoms. Such violations are frequent outside the lab and affect the accuracy of the subsequent data analysis and scientific conclusions. To address these problems, we report on a unified algorithmic framework for automated sensor data quality control, which can identify those parts of the sensor data that are sufficiently reliable for further analysis. Combining both parametric and nonparametric signal processing and machine learning techniques, we demonstrate that across 100 subjects and 300 clinimetric tests from three different types of behavioral clinimetric protocols, the system shows an average segmentation accuracy of around 90%. By extracting reliable sensor data, it is possible to strip the data of confounding factors in the environment that may threaten reproducibility and replicability

    Real-Life Gait Performance as a Digital Biomarker for Motor Fluctuations: The Parkinson@Home Validation Study

    Get PDF
    Background: Wearable sensors have been used successfully to characterize bradykinetic gait in patients with Parkinson disease (PD), but most studies to date have been conducted in highly controlled laboratory environments. Objective: This paper aims to assess whether sensor-based analysis of real-life gait can be used to objectively and remotely monitor motor fluctuations in PD. Methods: The Parkinson@Home validation study provides a new reference data set for the development of digital biomarkers to monitor persons with PD in daily life. Specifically, a group of 25 patients with PD with motor fluctuations and 25 age-matched controls performed unscripted daily activities in and around their homes for at least one hour while being recorded on video. Patients with PD did this twice: once after overnight withdrawal of dopaminergic medication and again 1 hour after medication intake. Participants wore sensors on both wrists and ankles, on the lower back, and in the front pants pocket, capturing movement and contextual data. Gait segments of 25 seconds were extracted from accelerometer signals based on manual video annotations. The power spectral density of each segment and device was estimated using Welch’s method, from which the total power in the 0.5- to 10-Hz band, width of the dominant frequency, and cadence were derived. The ability to discriminate between before and after medication intake and between patients with PD and controls was evaluated using leave-one-subject-out nested cross-validation. Results: From 18 patients with PD (11 men; median age 65 years) and 24 controls (13 men; median age 68 years), ≥10 gait segments were available. Using logistic LASSO (least absolute shrinkage and selection operator) regression, we classified whether the unscripted gait segments occurred before or after medication intake, with mean area under the receiver operator curves (AUCs) varying between 0.70 (ankle of least affected side, 95% CI 0.60-0.81) and 0.82 (ankle of most affected side, 95% CI 0.72-0.92) across sensor locations. Combining all sensor locations did not significantly improve classification (AUC 0.84, 95% CI 0.75-0.93). Of all signal properties, the total power in the 0.5- to 10-Hz band was most responsive to dopaminergic medication. Discriminating between patients with PD and controls was generally more difficult (AUC of all sensor locations combined: 0.76, 95% CI 0.62-0.90). The video recordings revealed that the positioning of the hands during real-life gait had a substantial impact on the power spectral density of both the wrist and pants pocket sensor. Conclusions: We present a new video-referenced data set that includes unscripted activities in and around the participants’ homes. Using this data set, we show the feasibility of using sensor-based analysis of real-life gait to monitor motor fluctuations with a single sensor location. Future work may assess the value of contextual sensors to control for real-world confounders
    corecore